Derivatizace skupin obsahujících kyslík | Funkční skupina | Postup | Příklady | Poznámky | |--|---|---|---| | -OH
(Primary, secondary
and tertiary
alcohols; phenols; | Silylation
Acylation | -O-Si(CH ₃) ₃
-O-CO-CH ₃ ; -O-CO-CF ₃ | | | carbohydrates) | Benzoylation
Alkylation
Dansylation
Reaction with Dis-Cl | -O-CO-C ₆ H ₅ ; -O-CO-C ₆ F ₅
-O-CH ₃ ; -O-CH ₂ -C ₆ F ₅
Ar-O-Dns
-O-Dis | Fluorescent derivative (phenols) Fluorescent derivatives of phenols and alcohols | | | Reaction with FDNB | -O-NO ₂ | For GLC of phenols with ECD | | | Reaction with | 7-Nitrobenzofurazan | Fluorescent derivative (phenols) | | | NBD-Cl
Ion-pair formation | Ar-O-M+ | For phenols; 'M' can be a variety of counter-ions | | C=O | Oxime formation | C=N-OH; C=N-O-CH, | May form syn and anti isomers | | (Aldehydes and ketones) | Oxime formation and silylation | C=N-O-Si(CH ₃) ₃ | May form syn and anti isomers | | | Ketal/acetal formation | \times | | | | Hydrazone formation | C=N-NH-C₀H₅ | Fluorescent and electron capturing derivatives available | | | Schiff's base formation | C=N-R | | | | Silylation | =C-CO-O-Si(CH ₃) ₃

 O-Si(CH ₃) ₃ | Only when enol formation is favoured, e.g. pyruvate | | | Oxidation | -соон | For aldehydes and methyl ketones
(iodoform reaction); derivatized as
carboxylic acids | | -COOH
(Carboxylic acids) | Esterification (alkyl) Esterification (aryl) Silylation Ion-pair formation | $-CO_2-CH_3$; $-CO_2-CH_2CF_3$
$-CO_2-CH_2C_6H_5$; $-CO_2-CH_2C_6F_5$
$-CO_2-Si(CH_3)_3$
$R-COO^-M^+$ | 'M' may be a variety of counter-ions | |------------------------------------|--|--|--| | -CC-

OH OH
(Glycols) | As for -OH, but also:
Cyclic boronate
formation | —cн—cн— | R = alkyl (most often butyl),
or phenyl | | | Acetal or ketal formation | —çн—çн—
0
R 0
R' | z · | | -сн-соон

он | As for the individual groupings, but also: | | | | (α-Hydroxy acids) | Boronation | | | | | Simultaneous acylation and esterification | -CH-COO-C ₂ H ₅

O-CO-C ₃ F ₇ | A number of variations of this approach are available | | -CO-COOH
(α-Keto acids) | As for the individual groupings, but also: Cyclization with 1,2-diaminobenzene followed by silylation | N R O Si(CH ₃) ₃ | | | R-CO-OR'
(Esters) | Esters may be analysed chromatographically without derivatization, but where R' is involatile: Ester interchange (transesterification) | R-CO-OCH, | | | R—co
R'—co
(Acid anhydrides) | Esterification | R-CO-OR''+R'-CO-OR'' | Treat exactly the same as an acid, using e.g. EtOH/HCl | Derivatizace skupin obsahujících dusík Poznámka Příklady Funkční skupina **Postup** -NH₂ Acylation -NH-CO-CH₃: -NH-CO-CF₃ (Primary amines; Benzoylation -NH-CO-C6H5; -NH-CO-C6F5 amino acids; Silylation (mild) -NH-Si(CH₃)₃ Mixtures may be obtained $-N[Si(CH_3)_3]_2$ amino sugars) Silylation (vigorous) Volatile, for use with GLC -N=C=S Treatment with CS2 Fluorescent derivative Thiourea formation Schiff's base formation -N=CH-C₆F₅ 2,4-Dinitrophenylation Sulphonamide formation | | NO ₂ | | | | |---|------------------------------|---|---|--| | | | -NH-Dns | Fluorescent derivative (several variants available) | | | | Carbamate formation | -NH-CO ₂ -CH ₃ | Management of the state | | | | Treatment with fluorescamine | N-substituted 2-phenyl-
pyrrolin-4-ones | Specific fluorogenic reagent for primary amino groups | | | | Treatment with pyridoxal | Pyridoxylidine
derivative | Semi-specific fluorogenic reagent for primary amines | | | | Treatment with NBD-Cl | 7-Nitrobenzo-
furazan | Fluorescent product | | | | Alkylation | −N <ch₃< td=""><td></td></ch₃<> | | | | | Ion-pair formation | $R-NH_3^+X^-$ | "X" may be a variety of counter-ions | | | | | R R | | | | -NH-R
(Secondary amines,
imino acids, substituted | Acylation | -N-CO-CH ₃ ; -N-CO-CF ₃
R R | As with primary amines | | | amino sugars) | Benzoylation
Silylation | -N-CO-C ₀ H ₅ ; -N-CO-C ₀ F ₅
-N-Si(CH ₃) ₃ | As with primary amines
May need 'forcing' conditions | | | | | | | | R | | 2,4-Dinitrophenylation | _NNO ₂ | As with primary amines | |--|------------------------|--|---| | | Sulphonamide formation | NO₂ | As with primary amines
(more probability of
side reactions) | | | Treatment with NBD-Cl | R | As with primary amines | | | Ion-pair formation | R NH ₂ X | 'X' may be a variety of
counter-ions | | R-N-R' | Carbamate
formation | R $NH_{2}^{+}X^{-}$ R $N-CO_{2}-CH_{2}-C_{6}F_{5}$ | | | (Tertiary amines) | | | | | Quaternary
ammonium salts | Thermal decomposition | Tertiary amines | HPLC directly Chapter 8 of first edition | | ammonium saits | Ion-pair formation | R₄N ⁺ X ⁻ | 'X' may be a variety of counter-ions | | -CO-NH ₂ (Amides) | Silylation (vigorous) | -C=N-Si(CH ₃) ₃

O-Si(CH ₃) ₃ | Silylamides are
themselves powerful
silylating reagents | | | Acylation (vigorous) | -CO-NH-CO-C ₆ F ₅ | | | | Alkylation | −CO−N(CH₃)₂
R′ | e.g. CH ₃ I/NaH/DMSO | | R-NH-CO-NH-R' (substituted ureas; | Acylation | R-N-CO-N-CO-CF ₃ | | | carbamides)
-CO-NH-R
(Alkylamides) | Acylation (vigorous) | CO-CF ₃
-CO-N-CO-C ₆ F ₅

R | | | | Silylation | -CO-N-R

Si(CH ₃) ₃ | Silylamides are
themselves powerful
silylation reagents | | | Alkylation | -CO-N-R

CH ₃ | e.g. CH ₃ I/NaH/DMSO | | Funkční skupina | Postup | Příklad produktu | Poznámka | |--|--|--|---| | R-NH-C-NH-R' NH (Substituted guanidines) | Acylation (vigorous) | N-CO-CF, R-N-C-NR'-CO-CF, CO-CF, | Acylation is difficult,
and stability of the
products is poor | | 8 | Cyclic derivatives | , | | | R-CH-NH ₂ | Silylation | R-CH-NH-Si(CH ₃) ₃ | | | COOH (Amino acids) | | COOSi(CH ₃) ₃ | | | (dillio acids) | Esterification + Acylation | R-CH-NH-CO-CF ₃

COOC ₄ H ₉ | | | -CH—CH-

OH NH ₂
(Amino alcohols) | As for individual groups,
but see also: | | | | | Cyclic boronate
formation | | | | | Simultaneous acylation and silylation |
-CH-CH-NH-CO-CF ₃

O-Si(CH ₃) ₃ | Using N-methyl-N-
trimethylsilyl-
trifluoroacetamide
for example | | -NO ₂
(Nitro compounds) | Chromatograph without derivatization | | Electron-capturing;
coloured |