Derivatizace skupin obsahujících kyslík

Funkční skupina	Postup	Příklady	Poznámky
-OH (Primary, secondary and tertiary alcohols; phenols;	Silylation Acylation	-O-Si(CH ₃) ₃ -O-CO-CH ₃ ; -O-CO-CF ₃	
carbohydrates)	Benzoylation Alkylation Dansylation Reaction with Dis-Cl	-O-CO-C ₆ H ₅ ; -O-CO-C ₆ F ₅ -O-CH ₃ ; -O-CH ₂ -C ₆ F ₅ Ar-O-Dns -O-Dis	Fluorescent derivative (phenols) Fluorescent derivatives of phenols and alcohols
	Reaction with FDNB	-O-NO ₂	For GLC of phenols with ECD
	Reaction with	7-Nitrobenzofurazan	Fluorescent derivative (phenols)
	NBD-Cl Ion-pair formation	Ar-O-M+	For phenols; 'M' can be a variety of counter-ions
C=O	Oxime formation	C=N-OH; C=N-O-CH,	May form syn and anti isomers
(Aldehydes and ketones)	Oxime formation and silylation	C=N-O-Si(CH ₃) ₃	May form syn and anti isomers
	Ketal/acetal formation	\times	
	Hydrazone formation	C=N-NH-C₀H₅	Fluorescent and electron capturing derivatives available
	Schiff's base formation	C=N-R	
	Silylation	=C-CO-O-Si(CH ₃) ₃ O-Si(CH ₃) ₃	Only when enol formation is favoured, e.g. pyruvate
	Oxidation	-соон	For aldehydes and methyl ketones (iodoform reaction); derivatized as carboxylic acids

-COOH (Carboxylic acids)	Esterification (alkyl) Esterification (aryl) Silylation Ion-pair formation	$-CO_2-CH_3$; $-CO_2-CH_2CF_3$ $-CO_2-CH_2C_6H_5$; $-CO_2-CH_2C_6F_5$ $-CO_2-Si(CH_3)_3$ $R-COO^-M^+$	'M' may be a variety of counter-ions
-CC- OH OH (Glycols)	As for -OH, but also: Cyclic boronate formation	—cн—cн—	R = alkyl (most often butyl), or phenyl
	Acetal or ketal formation	—çн—çн— 0 R 0 R'	z ·
-сн-соон он	As for the individual groupings, but also:		
(α-Hydroxy acids)	Boronation		
	Simultaneous acylation and esterification	-CH-COO-C ₂ H ₅ O-CO-C ₃ F ₇	A number of variations of this approach are available
-CO-COOH (α-Keto acids)	As for the individual groupings, but also: Cyclization with 1,2-diaminobenzene followed by silylation	N R O Si(CH ₃) ₃	
R-CO-OR' (Esters)	Esters may be analysed chromatographically without derivatization, but where R' is involatile: Ester interchange (transesterification)	R-CO-OCH,	
R—co R'—co (Acid anhydrides)	Esterification	R-CO-OR''+R'-CO-OR''	Treat exactly the same as an acid, using e.g. EtOH/HCl

Derivatizace skupin obsahujících dusík Poznámka Příklady Funkční skupina **Postup** -NH₂ Acylation -NH-CO-CH₃: -NH-CO-CF₃ (Primary amines; Benzoylation -NH-CO-C6H5; -NH-CO-C6F5 amino acids; Silylation (mild) -NH-Si(CH₃)₃ Mixtures may be obtained $-N[Si(CH_3)_3]_2$ amino sugars) Silylation (vigorous) Volatile, for use with GLC -N=C=S Treatment with CS2 Fluorescent derivative Thiourea formation Schiff's base formation -N=CH-C₆F₅ 2,4-Dinitrophenylation Sulphonamide formation

	NO ₂			
		-NH-Dns	Fluorescent derivative (several variants available)	
	Carbamate formation	-NH-CO ₂ -CH ₃	Management of the state of the	
	Treatment with fluorescamine	N-substituted 2-phenyl- pyrrolin-4-ones	Specific fluorogenic reagent for primary amino groups	
	Treatment with pyridoxal	Pyridoxylidine derivative	Semi-specific fluorogenic reagent for primary amines	
	Treatment with NBD-Cl	7-Nitrobenzo- furazan	Fluorescent product	
	Alkylation	−N <ch₃< td=""><td></td></ch₃<>		
	Ion-pair formation	$R-NH_3^+X^-$	"X" may be a variety of counter-ions	
		R R		
-NH-R (Secondary amines, imino acids, substituted	Acylation	-N-CO-CH ₃ ; -N-CO-CF ₃ R R	As with primary amines	
amino sugars)	Benzoylation Silylation	-N-CO-C ₀ H ₅ ; -N-CO-C ₀ F ₅ -N-Si(CH ₃) ₃	As with primary amines May need 'forcing' conditions	

R

	2,4-Dinitrophenylation	_NNO ₂	As with primary amines
	Sulphonamide formation	NO₂	As with primary amines (more probability of side reactions)
	Treatment with NBD-Cl	R	As with primary amines
	Ion-pair formation	R NH ₂ X	'X' may be a variety of counter-ions
R-N-R'	Carbamate formation	R $NH_{2}^{+}X^{-}$ R $N-CO_{2}-CH_{2}-C_{6}F_{5}$	
(Tertiary amines)			
Quaternary ammonium salts	Thermal decomposition	Tertiary amines	HPLC directly Chapter 8 of first edition
ammonium saits	Ion-pair formation	R₄N ⁺ X ⁻	'X' may be a variety of counter-ions
-CO-NH ₂ (Amides)	Silylation (vigorous)	-C=N-Si(CH ₃) ₃ O-Si(CH ₃) ₃	Silylamides are themselves powerful silylating reagents
	Acylation (vigorous)	-CO-NH-CO-C ₆ F ₅	
	Alkylation	−CO−N(CH₃)₂ R′	e.g. CH ₃ I/NaH/DMSO
R-NH-CO-NH-R' (substituted ureas;	Acylation	R-N-CO-N-CO-CF ₃	
carbamides) -CO-NH-R (Alkylamides)	Acylation (vigorous)	CO-CF ₃ -CO-N-CO-C ₆ F ₅ R	
	Silylation	-CO-N-R Si(CH ₃) ₃	Silylamides are themselves powerful silylation reagents
	Alkylation	-CO-N-R CH ₃	e.g. CH ₃ I/NaH/DMSO

Funkční skupina	Postup	Příklad produktu	Poznámka
R-NH-C-NH-R' NH (Substituted guanidines)	Acylation (vigorous)	N-CO-CF, R-N-C-NR'-CO-CF, CO-CF,	Acylation is difficult, and stability of the products is poor
8	Cyclic derivatives	,	
R-CH-NH ₂	Silylation	R-CH-NH-Si(CH ₃) ₃	
COOH (Amino acids)		COOSi(CH ₃) ₃	
(dillio acids)	Esterification + Acylation	R-CH-NH-CO-CF ₃ COOC ₄ H ₉	
-CH—CH- OH NH ₂ (Amino alcohols)	As for individual groups, but see also:		
	Cyclic boronate formation		
	Simultaneous acylation and silylation	 -CH-CH-NH-CO-CF ₃ O-Si(CH ₃) ₃	Using N-methyl-N- trimethylsilyl- trifluoroacetamide for example
-NO ₂ (Nitro compounds)	Chromatograph without derivatization		Electron-capturing; coloured